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RUN-TIME CODE PARALLELIZATION WITH
MONITORING OF REPETITIVE
INSTRUCTION SEQUENCES DURING
BRANCH MIS-PREDICTION

FIELD OF THE INVENTION

The present invention relates generally to processor
design, and particularly to methods and systems for run-time
code parallelization.

BACKGROUND OF THE INVENTION

Various techniques have been proposed for dynamically
parallelizing software code at run-time. For example, Akkary
and Driscoll describe a processor architecture that enables
dynamic multithreading execution of a single program, in “A
Dynamic Multithreading Processor,” Proceedings of the 31
Annual International Symposium on Microarchitectures,
December, 1998, which is incorporated herein by reference.

Marcuellu et al., describe a processor microarchitecture
that simultaneously executes multiple threads of control
obtained from a single program by means of control specu-
lation techniques that do not require compiler or user support,
in “Speculative Multithreaded Processors,” Proceedings of
the 127 International Conference on Supercomputing, 1998,
which is incorporated herein by reference.

Marcuello and Gonzales present a microarchitecture that
spawns speculative threads from a single-thread application
at run-time, in “Clustered Speculative Multithreaded Proces-
sors,” Proceedings of the 13? International Conference on
Supercomputing, 1999, which is incorporated herein by ref-
erence.

In “A Quantitative Assessment of Thread-Level Specula-
tion Techniques,” Proceedings of the 14” International Par-
allel and Distributed Processing Symposium, 2000, which is
incorporated herein by reference, Marcuello and Gonzales
analyze the benefits of different thread speculation tech-
niques and the impact of value prediction, branch prediction,
thread initialization overhead and connectivity among thread
units.

Ortiz-Arroyo and Lee describe a multithreading architec-
ture called Dynamic Simultaneous Multithreading (DSMT)
that executes multiple threads from a single program on a
simultaneous multithreading processor core, in “Dynamic
Simultaneous Multithreaded Architecture,” Proceedings of
the 16™ International Conference on Parallel and Distributed
Computing Systems (PDCS’03), 2003, which is incorporated
herein by reference.

SUMMARY OF THE INVENTION

An embodiment of the present invention that is described
herein provides a method including, in a processor that
executes instructions of program code, monitoring the
instructions in a segment of a repetitive sequence of the
instructions so as to construct a specification of register
access by the monitored instructions. In response to detecting
a branch mis-prediction in the monitored instructions, the
specification is corrected so as to compensate for the branch
mis-prediction. Execution of the repetitive sequence is paral-
lelized based on the corrected specification.

In some embodiments, monitoring the instructions further
includes generating a flow-control trace traversed by the
monitored instructions, and the method includes correcting
the flow-control trace so as to compensate for the branch
mis-prediction. In an embodiment, the method includes con-
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tinuing monitoring the instructions during parallelized execu-
tion. In an embodiment, the method includes continuing to
monitor the instructions and construct the specification after
correcting the specification. In an example embodiment, cor-
recting the specification includes terminating monitoring of
the instructions of the segment and discarding at least part of
the specification of the register access collected in the seg-
ment.

In some embodiments, correcting the specification
includes rolling-back the specification, based on the instruc-
tions following the branch mis-prediction, to a previous state
corresponding to an instruction at or prior to a branch instruc-
tion in which the branch mis-prediction occurred. In an
embodiment, monitoring the instructions includes recording
in the specification a location in the sequence of a last write
operation to a register, and rolling-back the specification
includes correcting the location of the last write operation. In
an example embodiment, recording the location of the last
write operation includes incrementing a count of write opera-
tions to the register, and correcting the location includes
decrementing the count to a value corresponding to the
branch instruction in which the branch mis-prediction
occurred.

In a disclosed embodiment, monitoring the instructions
includes recording in the specification a classification of reg-
isters accessed by the monitored instructions, and correcting
the specification includes re-classifying one or more of the
registers so as to compensate for the branch mis-prediction.

In some embodiments, monitoring the instructions
includes saving one or more states of the specification at or
prior to one or more respective branch instructions along the
monitored segment, and correcting the specification includes
reverting to a saved state corresponding to an instruction at or
prior to a branch instruction in which the branch mis-predic-
tion occurred.

Saving the states may include saving the states only for a
partial subset of the branch instructions along the monitored
segment. The method may include selecting the partial subset
ofthe branch instructions in accordance with a directive in the
program code or from a compiler of the program code, and/or
based on a criterion evaluated at runtime.

In some embodiments, monitoring the instructions
includes generating a flow-control trace of the monitored
instructions based on branch instructions being fetched from
memory in an execution pipeline of the processor, based on
branch instructions being decoded in an execution pipeline of
the processor, and/or based jointly on branch instructions
being fetched from memory, and on the branch instructions
being decoded, in an execution pipeline of the processor.

In some embodiments monitoring the instructions includes
recording in the specification a location in the sequence of a
last write operation to a register, based on the instructions
being decoded in an execution pipeline of the processor,
based on the instructions being executed in an execution
pipeline of the processor, and/or based on the instructions that
are committed and are not flushed due to the branch mis-
prediction.

In an embodiment, monitoring the instructions includes
collecting the register access only after evaluating respective
branch conditions of conditional branch instructions of the
sequence. In another embodiment, monitoring the instruc-
tions includes generating a flow-control trace for the moni-
tored instructions, including for a branch instruction that is
not known to a branch prediction unit of the processor.

There is additionally provided, in accordance with an
embodiment of the present invention, a processor including
an execution pipeline and a monitoring unit. The execution
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pipeline is configured to execute instructions of program
code. The monitoring unit is configured to monitor the
instructions in a segment of a repetitive sequence of the
instructions so as to construct a specification of register
access by the monitored instructions, to correct the specifica-
tion in response to detecting a branch mis-prediction in the
monitored instructions so as to compensate for the branch
mis-prediction, and to parallelize execution of the repetitive
sequence based on the corrected specification. The present
invention will be more fully understood from the following
detailed description of the embodiments thereof, taken
together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
processor that performs run-time code parallelization, in
accordance with an embodiment of the present invention;

FIG. 2 is a diagram that schematically illustrates run-time
parallelization of a program loop, in accordance with an
embodiment of the present invention; and

FIG. 3 is a flow chart that schematically illustrates a
method for mitigating branch mis-prediction during monitor-
ing of a repetitive instruction sequence, in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Embodiments of the present invention that are described
herein provide improved methods and devices for run-time
parallelization of code in a processor. In the disclosed
embodiments, the processor identifies a repetitive sequence
of instructions, and creates and executes multiple parallel
code sequences referred to as segments, which carry out
different occurrences of the sequence. The segments are
scheduled for parallel execution by multiple hardware
threads.

For example, the repetitive sequence may comprise a loop,
in which case the segments comprise multiple loop iterations,
parts of an iteration or the continuation of a loop. As another
example, the repetitive sequence may comprise a function, in
which case the segments comprise multiple function calls,
parts of a function or function continuation. The paralleliza-
tion is carried out at run-time, on pre-compiled code. The
term “repetitive sequence” generally refers to any instruction
sequence that is revisited and executed multiple times.

In some embodiments, upon identifying a repetitive
sequence, the processor monitors the instructions in the
sequence and constructs a “scoreboard”—A specification of
access to registers by the monitored instructions. The score-
board is associated with the specific flow-control trace tra-
versed by the monitored sequence. The processor decides
how and when to create and execute the multiple segments
based on the information collected in the scoreboard and the
trace.

Further aspects of instruction monitoring are addressed in
a U.S. patent application Ser. No. 14/578,516 entitled “Run-
time code parallelization with continuous monitoring of
repetitive instruction sequences,” and a U.S. patent applica-
tion Ser. No. 14/578,518 entitled “Register classification for
run-time code parallelization,” which are assigned to the
assignee of the present patent application and whose disclo-
sures are incorporated herein by reference.

In some embodiments, the processor fetches and processes
instructions in its execution pipeline. Branch mis-prediction
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may occur when a conditional branch instruction is predicted
to take a branch but during actual execution the branch is not
taken, or vice versa. Upon detecting branch mis-prediction,
the processor typically flushes the subsequent instructions
and respective results.

When branch mis-prediction occurs in a segment whose
instructions are being monitored, the register-access informa-
tion in the scoreboard will typically be incorrect or at least
incomplete. Some embodiments described herein provide
techniques for correcting the register-access information col-
lected in the scoreboard after detecting a branch mis-predic-
tion event.

Inan example embodiment, the processor stops monitoring
of the segment in question and discards the register-access
information collected in it. In other embodiments, the proces-
sor rolls-back the scoreboard to the state prior to the mis-
prediction, and continues to monitor the segment following
the correct branch decision.

The processor may roll-back the scoreboard in various
ways, such as by saving in advance the states of the score-
board prior to conditional branch instructions, and reverting
to a previously-saved state when needed. Alternatively, the
processor may roll-back the scoreboard by tracing back the
instructions that follow the mis-prediction and decrementing
the register-access counters back to their values prior to the
mis-prediction. Rolling-back may be carried out for all con-
ditional branch instructions, or only for a selected subset of
the conditional branch instructions. Example criteria for
selecting the subset are also described.

In some embodiments, as part of the monitoring process,
the processor generates the flow-control trace to be associated
with the scoreboard. Upon detecting mis-prediction, the pro-
cessor typically corrects the generated flow-control trace, as
well, using any of the methods described above.

In other disclosed embodiments, the processor reduces the
impact of mis-prediction by proper choice of the execution-
pipeline stage at which the flow-control trace is generated,
and the execution-pipeline stage at which the register-access
information is collected.

In various embodiments, the processor may generate the
trace from the instructions immediately after fetching, imme-
diately after decoding, or a combination of the two.

The register-access information may be collected, for
example, immediately after decoding, after execution (in-
cluding execution of mis-predicted instructions that will be
flushed), or after committing (including only instructions that
will not be flushed).

System Description

FIG. 1 is a block diagram that schematically illustrates a
processor 20, in accordance with an embodiment of the
present invention. Processor 20 runs pre-compiled software
code, while parallelizing the code execution. Parallelization
decisions are performed by the processor at run-time, by
analyzing the program instructions as they are fetched from
memory and decoded.

In the present example, processor 20 comprises an execu-
tion pipeline that comprises one or more fetching units 24,
one or more decoding units 28, an Out-of-Order (O00)
buffer 32, and execution units 36. Fetching units fetch pro-
gram instructions from a multi-level instruction cache
memory, which in the present example comprises a Level-1
(L1)instruction cache 40 and a Level-2 (L.2) instruction cache
44.

A branch prediction unit 48 predicts the flow-control traces
(referred to herein as “traces” for brevity) that are expected to
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be traversed by the program during execution. The predic-
tions are typically based on the addresses or Program-
Counter (PC) values of previous instructions fetched by
fetching units 24. Based on the predictions, branch prediction
unit 48 instructs fetching units 24 which new instructions are
to be fetched. The flow-control predictions of unit 48 also
affect the parallelization of code execution, as will be
explained below.

Instructions decoded by decoding units 28 are stored in
00O buffer 32, for out-of-order execution by execution units
36, i.e., not in the order in which they have been compiled and
stored in memory. Alternatively, the buffered instructions
may be executed in-order. The buffered instructions are then
issued for execution by the various execution units 36. In the
present example, execution units 36 comprise one or more
Multiply-Accumulate (MAC) units, one or more Arithmetic
Logic Units (ALU), one or more Load/Store units, and a
branch execution unit (BRA). Additionally or alternatively,
execution units 36 may comprise other suitable types of
execution units, for example Floating-Point Units (FPU).

The results produced by execution units 36 are stored in a
register file and/or a multi-level data cache memory, which in
the present example comprises a Level-1 (LL1) data cache 52
and a Level-2 (L.2) data cache 56. In some embodiments, [.2
data cache memory 56 and 1.2 instruction cache memory 44
are implemented as separate memory areas in the same physi-
cal memory, or simply share the same memory without fixed
pre-allocation.

In some embodiments, processor 20 further comprises a
thread monitoring and execution unit 60 that is responsible
for run-time code parallelization. The functions of unit 60 are
explained in detail below.

The configuration of processor 20 shown in FIG. 1 is an
example configuration that is chosen purely for the sake of
conceptual clarity. In alternative embodiments, any other
suitable processor configuration can be used. For example, in
the configuration of FIG. 1, multi-threading is implemented
using multiple fetch units 24 and multiple decoding units 28.
Each hardware thread may comprise a fetch unit assigned to
fetch instructions for the thread and a decoding unit assigned
to decode the fetched instructions. Additionally or alterna-
tively, multi-threading may be implemented in many other
ways, such as using multiple OOO buffers, separate execution
units per thread and/or separate register files per thread. In
another embodiment, different threads may comprise difter-
ent respective processing cores.

As yet another example, the processor may be imple-
mented without cache or with a different cache structure,
without branch prediction or with a separate branch predic-
tion per thread. The processor may comprise additional ele-
ments such as reorder buffer (ROB), register renaming, to
name just a few. Further alternatively, the disclosed tech-
niques can be carried out with processors having any other
suitable microarchitecture.

Processor 20 can be implemented using any suitable hard-
ware, such as using one or more Application-Specific Inte-
grated Circuits (ASICs), Field-Programmable Gate Arrays
(FPGAs) or other device types. Additionally or alternatively,
certain elements of processor 20 can be implemented using
software, or using a combination of hardware and software
elements. The instruction and data cache memories can be
implemented using any suitable type of memory, such as
Random Access Memory (RAM).

Processor 20 may be programmed in software to carry out
the functions described herein. The software may be down-
loaded to the processor in electronic form, over a network, for
example, or it may, alternatively or additionally, be provided
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and/or stored on non-transitory tangible media, such as mag-
netic, optical, or electronic memory.

Run-Time Code Parallelization Based on Segment
Monitoring

In some embodiments, unit 60 in processor 20 identifies
repetitive instruction sequences and parallelizes their execu-
tion. Repetitive instruction sequences may comprise, for
example, respective iterations of a program loop, respective
occurrences of a function or procedure, or any other suitable
sequence of instructions that is revisited and executed mul-
tiple times. In the present context, the term “repetitive instruc-
tion sequence” refers to an instruction sequence whose flow-
control trace (e.g., sequence of PC values) has been executed
in the past at least once. Data values (e.g., register values) may
differ from one execution to another.

In the disclosed embodiments, processor 20 parallelizes a
repetitive instruction sequence by invoking and executing
multiple code segments in parallel or semi-parallel using
multiple hardware threads. Each thread executes a respective
code segment, e.g., a respective iteration of a loop, multiple
(not necessarily successive) loop iterations, part of a loop
iteration, continuation of a loop, a function or part or continu-
ation thereof, or any other suitable type of segment.

Parallelization of segments in processor 20 is performed
using multiple hardware threads. In the example of FIG. 1,
although not necessarily, each thread comprises a respective
fetch unit 24 and a respective decoding unit 28 that have been
assigned by unit 60 to perform one or more segments. In
another example embodiment, a given fetch unit 24 is shared
between two or more threads.

Inpractice, data dependencies exist between segments. For
example, a calculation performed in a certain loop iteration
may depend on the result of a calculation performed in a
previous iteration. The ability to parallelize segments
depends to a large extent on such data dependencies.

FIG. 2 is a diagram that demonstrates run-time paralleliza-
tion of a program loop, in accordance with an example
embodiment of the present invention. The present example
refers to parallelization of instructions, but the disclosed tech-
nique can be used in a similar manner for parallelizing micro-
ops, as well. The top of the figure shows an example program
loop (reproduced from the bzip benchmark of the SPECint
test suite) and the dependencies between instructions. Some
dependencies are between instructions in the same loop itera-
tion, while others are between an instruction in a given loop
iteration and an instruction in a previous iteration.

The bottom of the figure shows how unit 60 parallelizes this
loop using four threads TH1 . . . TH4, in accordance with an
embodiment of the present invention. The table spans a total
of'eleven cycles, and lists which instructions of which threads
are executed during each cycle. Each instruction is repre-
sented by its iteration number and the instruction number
within the iteration. For example, “14” stands for the 4
instruction of the 1* loop iteration. In this example instruc-
tions 5 and 7 are neglected and perfect branch prediction is
assumed.

The staggering in execution of the threads is due to data
dependencies. For example, thread TH2 cannot execute
instructions 21 and 22 (the first two instructions in the second
loop iteration) until cycle 1, because instruction (the first
instruction in the second iteration) depends on instruction 13
(the third instruction of the first iteration). Similar dependen-
cies exist across the table. Overall, this parallelization scheme
is able to execute two loop iterations in six cycles, or one
iteration every three cycles.
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It is important to note that the parallelization shown in FIG.
2 considers only data dependencies between instructions, and
does not consider other constraints such as availability of
execution units. Therefore, the cycles in FIG. 2 do not neces-
sarily translate directly into respective clock cycles. For
example, instructions that are listed in FIG. 2 as executed in a
given cycle may actually be executed in more than one clock
cycle, because they compete for the same execution units 36.

In some embodiments, unit 60 decides how to parallelize
the code by monitoring the instructions in the processor pipe-
line. In response to identifying a repetitive instruction
sequence, unit 60 starts monitoring the sequence as it is
fetched, decoded and executed by the processor.

In some implementations, the functionality of unit may be
distributed among the multiple hardware threads, such that a
given thread can be viewed as monitoring its instructions
during execution. Nevertheless, for the sake of clarity, the
description that follows assumes that monitoring functions
are carried out by unit 60.

As part of the monitoring process, unit 60 generates the
flow-control trace traversed by the monitored instructions,
and a monitoring table that is referred to herein as a score-
board. The scoreboard of a segment typically comprises some
classification of the registers. In addition, for at least some of
the registers, the scoreboard indicates the location in the
monitored sequence of the last write operation to the register.

Any suitable indication may be used to indicate the loca-
tion of the last write operation, such as a count of the number
of' writes to the register or the address of the last write opera-
tion. The last-write indication enables unit 60 to determine,
for example, when it is permitted to execute an instruction in
a subsequent segment that depends on the value of the regis-
ter. Additional aspects of scoreboard generation can be found
in U.S. patent applications Ser. Nos. 14/578,516 and 14/578,
518, cited above.

Handling Branch Mis-Prediction During Segment
Monitoring

In some embodiments, processor 20 fetches and processes
instructions speculatively, based on a prediction of the branch
decisions that will be takes at future branch instructions.
Branch prediction is carried out by branch prediction unit 48,
and affects the instructions that are fetched for execution by
fetch units 24.

Depending on the actual code and on the performance of
unit 48, branch prediction may be erroneous. An event in
which a conditional branch was predicted to take a branch but
in fact the branch was not taken, or vice versa, is referred to
herein as branch mis-prediction, or simply mis-prediction for
brevity. In an embodiment of FIG. 1, the branch execution
unit (BRA) compares the branch prediction to the actual
branch decision and outputs a mis-prediction indication in
case of a mismatch.

As noted above, in some embodiments monitoring unit
monitors the flow-control trace and the register access during
execution. In other embodiments unit 60 may monitor the
flow-control trace and the register access in various segments
simultaneously during parallel execution. When mis-predic-
tion occurs in a segment being monitored, the resulting trace
and scoreboard will typically be incorrect. For example, the
scoreboard may comprise register-access information that
was collected over instructions that follow the mis-predicted
branch and will later be flushed.

In some embodiments, unit 60 takes various measures for
correcting the scoreboard in the event of mis-prediction. The
correction methods described below refer mainly to correc-
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tion of the register-access information. In some embodi-
ments, unit 60 uses these methods to correct the generated
flow-control trace as well.

In some embodiments, in response to a detected mis-pre-
diction event, unit 60 stops monitoring of the segment and
discards the register-access information collected so far in the
segment. Monitoring will typically be re-attempted in another
segment.

In other embodiments, unit 60 does not discard the register-
access information, but rather rolls-back the register-access
information to its state prior to the mis-prediction. After roll-
ing back, unit 60 may resume the monitoring process along
the correct trace.

Unit 60 may roll-back the scoreboard information in vari-
ous ways. In some embodiments, unit 60 traces back over the
instructions that follow the mis-prediction, and corrects the
register-access information to remove the contribution of
these instructions. For example, if the register-access infor-
mation comprises counts of write operations to registers, unit
60 may decrement the counts to remove the contribution of
write operations that follow the mis-prediction. Ifthe register-
access information comprises some other indications of the
locations of the last write operations to registers, unit 60 may
correct these indications, as well.

Inalternative embodiments, unit 60 prepares in advance for
apossible roll-back of the scoreboard to a conditional branch
instruction, by saving the state that the scoreboard had prior to
that instruction. If mis-prediction occurs in this instruction,
unit 60 may revert to the saved state of the scoreboard and
resume monitoring from that point. The saved state of the
scoreboard typically comprises the register-access informa-
tion and the register classification prior to the branch instruc-
tion. The state may correspond to the exact conditional branch
instruction, to the preceding instruction, or to another suitable
instruction that is prior to the conditional branch instruction.

In some embodiments, unit 60 saves the scoreboard state
prior to every conditional branch instruction, enabling roll-
back following any mis-prediction. In alternative embodi-
ments, unit 60 saves the scoreboard state for only a selected
subset of the conditional branch instructions in the segment.
This technique reduces memory space, but on the other hand
enables roll-back for only some of the possible mis-predic-
tions. If mis-prediction occurs in an instruction for which no
prior scoreboard state has been saved, unit 60 typically has to
abort monitoring the segment and re-attempt monitoring in
another segment.

Unit 60 may select the subset of conditional branch instruc-
tions (for which the prior state of the scoreboard is saved)
using any suitable criterion. Typically, the criterion aims to
select conditional branch instructions that are likely to be
mis-predicted, and exclude conditional branch instructions
that are likely to be predicted correctly. In one embodiment,
the subset to be selected is specified in the code or by a
compiler that compiles the code. In another embodiment, the
subset is chosen by unit 60 at runtime. For example, unit 60
may accumulate mis-prediction statistics and select condi-
tional branch instructions in which branch prediction accu-
racy is below a certain level.

The embodiments described above refer mainly to correc-
tion of the last-write indications in the scoreboard following
mis-prediction. Additionally or alternatively, unit 60 may
correct any other suitable register access information in the
scoreboard that may be affected by mis-prediction. For
example, the scoreboard typically comprises a classification
of' the registers accessed by the monitored instructions based
on the order in which the register is used as an operand or as
a destination in the monitored instructions. The classification
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may distinguish, for example, between local (L) registers
whose first occurrence is as a destination, global (G) registers
that are used only as operands, and global-local (GL) registers
whose first occurrence is as operands and are subsequently
used as destinations.

In some embodiments, unit 60 may re-classify one or more
of'the registers so as to reflect their correct classification prior
to the mis-prediction. Any of the correction methods
described above (e.g., reverting to previously-saved states or
tracing back the instruction sequence) can be used for this
purpose.

The embodiments described above are depicted purely by
way of example. In alternative embodiments, unit 60 may
correctthe scoreboard in response to branch mis-prediction in
any other suitable way.

For example, in some embodiments unit 60 performs only
an approximate correction of the specification that only
approximately compensates for the effect of the mis-predic-
tion. In these embodiments, unit 60 may roll back the speci-
fication to a state that approximates the state prior to the
mis-prediction, rather than to the exact prior state. The
approximation may comprise, for example, an approximation
of'the last-write indications of certain registers. In the present
context, both exact and approximate corrections are consid-
ered types of specification corrections, and both exact and
approximate compensation for the mis-prediction are consid-
ered types of compensation.

FIG. 3 is a flow chart that schematically illustrates a
method for mitigating branch mis-prediction during monitor-
ing of a repetitive instruction sequence, in accordance with an
embodiment of the present invention. The method begins
with unit 60 of processor 20 monitoring instructions of a
repetitive instruction sequence, at a monitoring step 70. As
part of the monitoring process, in some embodiments unit 60
generates the predicted flow-control trace traversed by the
instructions and the corresponding scoreboard.

Atan invocation step 74, unit 60 invokes multiple hardware
threads to execute respective segments of the repetitive
instruction sequence. For at least some of the segments, unit
60 continues to monitor the instructions during execution in
the threads.

At a mis-prediction detection step 78, processor 20 checks
whether branch mis-prediction has occurred in a given seg-
ment being executed. If no mis-prediction is encountered, the
method loops back to step 74 above.

In case of branch mis-prediction, unit 60 corrects the score-
board to compensate for the effect of the instructions follow-
ing the mis-prediction, at a correction step 82. Unit 60 may
use any of the techniques described above, or any other suit-
able technique, for this purpose. In some embodiments, the
correction involves correction of the register-access informa-
tion as well as correction of the generated flow-control trace.

Pipeline Considerations in Mitigating Branch
Mis-Prediction

In some embodiments, unit 60 reduces the impact of
branch mis-prediction by properly choosing the stage in the
execution pipeline at which the trace is generated and the
stage in the execution pipeline at which the register-access
information is collected. Generally, trace generation and col-
lection of register-access information need not be performed
at the same pipeline stage.

In some embodiments, unit 60 generates the trace from the
branch instructions being fetched, i.e., based on the branch
instructions at the output of fetching units 24. In alternative
embodiments, unit 60 generates the trace from the branch
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instructions being decoded, i.e., based on the branch instruc-
tions at the output of decoding units 28.

In yet another embodiment, unit 60 generates the trace
based on a combination of branch instructions at the output of
decoding units 28, and branch instructions at the output of
fetch units 24.

In some embodiments, unit 60 collects the register-access
information (e.g., classification of registers and locations of
last write operations to registers) at the output of decoding
units 28, i.e., from the instructions being decoded.

In other embodiments, unit 60 collects the register-access
information based on the instructions being executed in
execution units 36, but before the instructions and results are
finally committed. In this embodiment, the register-access
information includes the contribution of instructions that fol-
low mis-prediction and will later be flushed (as in the case of
collecting the register-access information after the decoding
unit). In an alternative embodiment, unit 60 collects the reg-
ister-access information based only on the instructions that
are committed, i.e., without considering instructions that are
flushed due to mis-prediction.

In yet another embodiment, unit 60 collects the register-
access information and/or generates the trace after evaluating
the conditions of conditional branch instructions by the
branch execution unit, i.e., at a stage where the branch
instructions are no longer conditional.

Further additionally or alternatively, unit 60 may generate
the flow-control trace and/or collect the register-access infor-
mation based on any other suitable pipeline stages.

Generally speaking, monitoring instructions early in the
pipeline helps to invoke parallel execution more quickly and
efficiently, but on the other hand is more affected by mis-
prediction. Monitoring instructions later in the pipeline
causes slower parallelization, but is on the other hand less
sensitive to mis-prediction.

In some embodiments, unit 60 is able to generate a trace
even monitoring a conditional branch instruction that is not
yet known to branch prediction unit 48. This scenario may
occur, for example, when a repetitive instruction sequence is
first encountered and not yet identified as repetitive. Never-
theless, the trace is still recorded by the decoding unit (or by
a register-renaming unit), and unit 60 may still be able to
generate a trace. Typically, the trace will be generated with a
branch not taken for this instruction.

It will be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described herein, as well as variations
and modifications thereof which would occur to persons
skilled in the art upon reading the foregoing description and
which are not disclosed in the prior art. Documents incorpo-
rated by reference in the present patent application are to be
considered an integral part of the application except that to the
extent any terms are defined in these incorporated documents
in a manner that conflicts with the definitions made explicitly
or implicitly in the present specification, only the definitions
in the present specification should be considered.

The invention claimed is:

1. A method, comprising:

in a processor that executes instructions of program code,
monitoring a repetitive sequence of the instructions that
exhibits a constant, recurring register access, and con-
structing a specification that specifies the recurring reg-
ister access;
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in response to detecting a branch mis-prediction in the
monitored instructions, rolling-back the recurring regis-
ter access specified in the specification so as to compen-
sate for a deviation in the recurring register access
caused by the branch mis-prediction; and

parallelizing execution of at least some of the instructions

based on the specification having the rolled-back recur-
ring register access.

2. The method according to claim 1, wherein monitoring
the instructions further comprises generating a flow-control
trace traversed by the monitored instructions, and comprising
correcting the flow-control trace so as to compensate for the
branch mis-prediction.

3. The method according to claim 1, and comprising con-
tinuing monitoring the instructions during parallelized execu-
tion.

4. The method according to claim 1, and comprising con-
tinuing to monitor the instructions and construct the specifi-
cation after rolling-back the recurring register access.

5. The method according to claim 1, wherein rolling-back
the recurring register access comprises terminating monitor-
ing of a segment of the instructions in which the branch
mis-prediction occurred, and discarding at least part of the
specification of the recurring register access collected in the
segment.

6. The method according to claim 1, wherein rolling-back
the recurring register access comprises rolling-back the recur-
ring register access, based on the instructions following the
branch mis-prediction, to a previous state corresponding to an
instruction at or prior to a branch instruction in which the
branch mis-prediction occurred.

7. The method according to claim 6, wherein monitoring
the instructions comprises recording in the specification a
location in the sequence of a last write operation to a register,
and wherein rolling-back the recurring register access com-
prises correcting the location of the last write operation.

8. The method according to claim 7, wherein recording the
location of the last write operation comprises incrementing a
count of write operations to the register, and wherein correct-
ing the location comprises decrementing the count to a value
corresponding to the branch instruction in which the branch
mis-prediction occurred.

9. The method according to claim 1, wherein monitoring
the instructions comprises recording in the specification a
classification of registers accessed by the monitored instruc-
tions, and wherein rolling-back the recurring register access
comprises re-classifying one or more of the registers so as to
compensate for the branch mis-prediction.

10. The method according to claim 1, wherein monitoring
the instructions comprises saving one or more states of the
specification at or prior to one or more respective branch
instructions along a monitored segment of the instructions,
and wherein rolling-back the recurring register access com-
prises reverting to a saved state corresponding to an instruc-
tion at or prior to a branch instruction in which the branch
mis-prediction occurred.

11. The method according to claim 10, wherein saving the
states comprises saving the states only for a partial subset of
the branch instructions along the monitored segment.

12. The method according to claim 11, and comprising
selecting the partial subset of the branch instructions in accor-
dance with a directive in the program code or from a compiler
of the program code.

13. The method according to claim 11, and comprising
selecting the partial subset of the branch instructions based on
a criterion evaluated at runtime.
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14. The method according to claim 1, wherein monitoring
the instructions comprises generating a flow-control trace of
the monitored instructions based on branch instructions being
fetched from memory in an execution pipeline of the proces-
sor.

15. The method according to claim 1, wherein monitoring
the instructions comprises generating a flow-control trace of
the monitored instructions based on branch instructions being
decoded in an execution pipeline of the processor.

16. The method according to claim 1, wherein monitoring
the instructions comprises generating a flow-control trace of
the monitored instructions based jointly on branch instruc-
tions being fetched from memory, and on the branch instruc-
tions being decoded, in an execution pipeline of the processor.

17. The method according to claim 1, wherein monitoring
the instructions comprises recording in the specification a
location in the sequence of a last write operation to a register,
based on the instructions being decoded in an execution pipe-
line of the processor.

18. The method according to claim 1, wherein monitoring
the instructions comprises recording in the specification a
location in the sequence of a last write operation to a register,
based on the instructions being executed in an execution
pipeline of the processor.

19. The method according to claim 1, wherein monitoring
the instructions comprises recording in the specification a
location in the sequence of a last write operation to a register,
based on the instructions that are committed and are not
flushed due to the branch mis-prediction.

20. The method according to claim 1, wherein monitoring
the instructions comprises collecting the register access only
after evaluating respective branch conditions of conditional
branch instructions of the sequence.

21. The method according to claim 1, wherein monitoring
the instructions comprises generating a flow-control trace for
the monitored instructions, including for a branch instruction
that is not known to a branch prediction unit of the processor.

22. A processor, comprising:

an execution pipeline, which is configured to execute

instructions of program code; and

a monitoring unit, which is configured to monitor a repeti-

tive sequence of the instructions that exhibits a constant,
recurring register access, to construct a specification that
specifies the recurring register access, to roll-back the
recurring register access specified in the specification in
response to detecting a branch mis-prediction in the
monitored instructions so as to compensate for a devia-
tion in the recurring register access caused by the branch
mis-prediction, and to parallelize execution of at least
some of the instructions based on the specification hav-
ing the rolled-back recurring register access.

23. The processor according to claim 22, wherein the moni-
toring unit is further configured to generate a flow-control
trace traversed by the monitored instructions, and to correct
the flow-control trace so as to compensate for the branch
mis-prediction.

24. The processor according to claim 22, wherein the moni-
toring unit is configured to roll-back the recurring register
access by terminating monitoring of the instructions of a
segment of the instructions in which the branch mis-predic-
tion occurred, and discarding the specification of the register
access collected in the segment.

25. The processor according to claim 22, wherein the moni-
toring unit is configured to roll-back the recurring register
access, based on the instructions following the branch mis-
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prediction, to a previous state corresponding to an instruction
at or prior to a branch instruction in which the branch mis-
prediction occurred.

26. The processor according to claim 22, wherein the moni-
toring unit is configured to record in the specification a clas-
sification of registers accessed by the monitored instructions,
and to roll-back the recurring register access by re-classifying
one or more of the registers so as to compensate for the branch
mis-prediction.

27.The processor according to claim 22, wherein the moni-
toring unit is configured to save one or more states of the
specification at or prior to one or more respective branch
instructions along a monitored segment of the instructions,
and to roll-back the recurring register access by reverting to a
saved state corresponding to an instruction at or prior to a
branch instruction in which the branch mis-prediction
occurred.

28. The processor according to claim 22,

wherein the monitoring unit is configured to generate a

flow-control trace of the monitored instructions based
on one of:
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branch instructions being fetched from memory in the

execution pipeline;

the branch instructions being decoded in the execution

pipeline; and

both the branch instructions being fetched from memory

and the branch instructions being decoded.

29. The processor according to claim 22, wherein the moni-
toring unit is configured to record in the specification a loca-
tion in the sequence of a last write operation to a register,
based on at least one of:

the instructions being decoded in the execution pipeline;

the instructions being executed in the execution pipeline;

and

the instructions that are committed and are not flushed due

to the branch mis-prediction.

30. The processor according to claim 22, wherein the moni-
toring unit is configured to collect the register access only
after evaluating respective branch conditions of conditional
branch instructions of the sequence.
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